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result from the tension created by the drag of the
melt on the seed.

We may also consider the idea that deposition of
atoms around ending dislocation lines may initially
occur as circular, and then may become polygonal,
and in particular hexagonal as is known from many
cases of crystal growth (Smakula, 1962). Superposition
of all of these ‘unit cells’ around dislocations may
then give the observed hexagonal geometry. However,
it is quite unlikely that polygonal spirals grow around
dislocations while the crystal is pulled from the melt.
Thus, all that remains is to believe in the tendency of
equilibrium to form hexagonal geometry, of which
nature is known to give many examples. Several types
of single crystal grown from the melt were shown to
exhibit a hexagonal network the size and regularity
of which were found to depend upon speed of growth,
temperature gradient, and impurity content, but have
nothing to do with crystal structure. Rutter & Chal-
mers (1952) have shown that these hexagonal cells of
that network essentially consist of a particular distrib-
ution of impurities resulting from non-equilibrium
during solidification. The hexagonal geometry re-
ported in this paper, however, was found not to
depend on impurities; thus, Rutter & Chalmer’s con-
cept does not apply to the present case.

The interpretation above of the acoustically formed
hexagonal geometry implies that an increase in the
rate of growth is expected to accompany the increase
in the density of defects at the solid-liquid interface.
It was quite gratifying that an increase in rate of
growth, », actually occurred during acoustic irradia-
tion (this increase as mentioned in the preceding
section amounted to as much as a factor of 1-6 to 1-8).
It is still necessary to show that such an increase in v
can not be achieved by much simpler effects than
dislocation activation etc., for instance by acoustically
affected cooling of the solid phase.

For ‘conventional’ growth (when no sound is ap-
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plied), Andrade & Roscoe (1937) correlate the rate
of growth, v, with the temperature gradient G, in the
form -

y = (1+Ki/K2)K:y @ @)
L
where K; and K. represent the thermal conductivity
of the crystal and the melt, respectively, and L is the
heat of crystallization per unit volume. This correla-
tion is known to be a qualitative description rather
than a quantitative one. However, an increase in v by
as much as 1-6 to 1-8 requires a decrease in the tem-
perature of the solidifying crystal by some 20° C.
However, no changes greater than 8 °C were meas-
ured, and thus acoustic cooling can not account for
the observed increase in v.

The author wishes to thank Mrs R. Lytton and Mr
W. H. Frandsen of the Research Department for help-
ful discussions and practical assistance.
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The Determination of Axial Ratios from Powder Diffraction Patterns

By Lupo K. FREVEL
Chemical Physics Research Laboratory, The Dow Chemical Company, Midland, Michigan, U.S.A.

(Received 28 June 1963 and in revised form 30 August 1963)

Accurate axial ratios of anisotropic crystalline phases can be obtained from precision powder data
by computing exhaustively the axial ratios from pairs of closely spaced, non-overlapping reflections.
The method has been applied successfully to the tetragonal, hexagonal, orthorhombic, and monoclinic

systems.

The determination of axial ratios with the reflecting
goniometer was developed into a precise technique
by mineralogists of the nineteenth century. Compendia

AC17 — 59

such as Dana’s System of Mineralogy or Groth’s
Chemische Krystallographie are replete with this type
of morphological information which has been of
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immense value to X-ray crystallographers. During
the past three decades, mineralogists have shifted
from the determination of axial ratios by optical
goniometry to the determination of unit-cell dimen-
sions by X-ray diffraction. Single-crystal methods,
in general, have proved vastly superior to the powder
methods in establishing the correct unit cell of a
crystalline phase. However, in many cases, the
accuracy of these cell constants is not sufficiently
high to yield axial ratios comparable in accuracy to
those determined by the two-circle goniometer. The
reason for this limited accuracy can be attributed
largely to the general use of small-radius cameras for
rotation or Weissenberg photographs. Modern powder
methods, on the other hand, are capable of yielding
axial ratios of greater accuracy than those obtained
by the best morphological measurements (Frondel,
1962). There is an abundance of published data on
precision measurements of lattice parameters of poly-
crystalline phases (Klug & Alexander, 1954 ; Edmunds,
Lipson & Steeple, 1955; Azaroff & Buerger, 1957;
Parrish & Wilson, 1959; 1.U.Cr. Stockholm meeting,
1959); unfortunately, however, the substances in-
vestigated pertain to relatively simple structures for
which unequivocally indexed back-reflections can be
registered. For anisotropic substances with cell
dimensions exceeding 6 A, it is rather unusual to
observe in the back-reflection region unambiguous
pinacoid reflections of sufficient intensity for the
reliable determination of lattice parameters. To
circumvent this limitation of the powder method it
has been found advantageous to compute exhaustively
the axial ratios from pairs of closely spaced, non-
overlapping reflections.

Theory

The ratio of two interplanar spacings, dpn=d(hnknln)
and dy =d(hnknls), can be determined with a minimum
error when these spacings form a clearly resolved
‘doublet’ because as 0, approaches 0n (without
overlapping) the principal systematic errors cancel out;
e.g. film shrinkage, effective camera radius, absorption
correction, beam divergence, and refraction correction
at low 6. For an orthorhombic crystal, the square
of this ratio is given by the expression

pgt o M tEAhn® it (00— 40)
T BT kR4 1re? sin? (On—A0n)
_ sin? 0n
= sin20,

1

where r1=a/b, ra=c[b, the cell edges follow the con-
vention O0<c<a<bd, and A6, is the refraction cor-
rection of the glancing angle for d, (Wilkens, 1960).
From two such pairs of closely spaced reflections one
can compute the axial ratios r, and ra:

AXIAL RATIOS FROM POWDER DIFFRACTION PATTERNS
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(RBd2d;2—k2) (IB—d2d;®)
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and a comparable expression for 2. Since the lattice
constants are positive quantities, it follows that the
determinants in expression (2) must be of the same
sign for correctly indexed reflections. Although only
three separate reflections are required to evaluate
r1 and 7e, the accuracy of these calculated values
depends on the magnitude of the determinants and
the precision of the experimentally determined ratios
d,d;* and d,d;*. It is obvious that as the numerator
of (2) approaches zero, the answers for 7 and re
become indeterminate (0/0). To guard against these
fluctuations, the entire powder pattern is grouped
into » pairs of closely spaced, unequivocally indexed
reflections from which »(v—1)/2 non-redundant values
of 71 and 7z are obtained. After eliminating the highly
inaccurate cases arising from unfavorably small
determinants, one averages the many remaining
answers to obtain the most probable values for
and re. Specific programs have been compiled on the
Burroughs 220 digital computer to perform these
computations for the tetragonal, hexagonal, ortho-
rhombic, and monoclinic systems.

Tetragonal system

If dr, and d, are two independent reflections of a
tetragonal phase, then the axial ratio c/a is given by:

B d3d;2 -1 3
ola = [ki+ki—(h?n+k3n)d3nd;2]

To test the efficacy of the described method for
obtaining accurate axial ratios, formula (3) was
applied to the reliable powder pattern of AglOq4
published by Swanson, Cook, Isaacs & Evans (1960).
Of 48 recorded reflections, 14 were excluded because
of superposition; from the remaining reflections 11
pairs, shown in Table 1, were selected for the test.
The value A, » of the numerator of (3) is also recorded
in Table 1 in order to estimate the accuracy of the
corresponding ¢/a. Averaging the 11 answers for c/a,
one arrives at an axial ratio that compares as shown
in Table 2 with the literature.

In general it is essential to verify the correct

assignment of indices of published powder data.
The following typical procedure was adopted in the
case of AglO4: (1) an average value of the a transla-
tion was determined as 5-374+0-002 A from 6 un-
ambiguous 2k0 reflections (200, 220, 400, 420, and
600); (2) the corresponding ¢ translation was then
calculated as (5-3744+0-002 A) (2-2509 +0-0024) =
12:096 +0-019 A; (8) with these lattice constants all
permitted reflections were computed on a Recomp III
computer employing a program written by Petersen

@)



Table 1. Selected powder reflections of AglOq4
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hmkmln and hnkaln are equivalent if k2 + k2% =A% +£2).
One might be tempted to equate two unresolved
reflections to calculate ¢/a. This is not a valid proce-
dure because (1) the individual intensities of the
supposedly overlapping reflections are usually not
known, and (2) the assumed condition, dn=dn,
arbitrarily ignores the experimental A8-range within
which two adjacent reflections are not resolved.
In every instance of the fifteen AglO4 powder reflec-
tions with multiple kkl’s, the calculated c/a is either
V5 or 0/0, if equal d’s are assumed.

hkl d Am,n cla
114 2-366 A 15-1088 2-2493
211 2-358
204 2-007 17-8717 2-2494
220 1-899
224 1-608 —45-9038 2-2524
008 1-512
040 1-343 — 64-0000 2-2526
028 1-318
404 1-228 16-6997 2-2494
420 1-202
406 1-119 20-1290 2-2595
424 1-117
309 1-0740 45-1813 2-2431
336 1-0728
2,0,12 0-9438 80-9198 2-2507
428 0-9408
620 0-8496 118-4782 2.2523
4,1,11 0-8407
4,0,12 0-8062 80-6811 2-2509
448 0-8043
448 0-8043 33-5779 2-2505
5,1,10 0-7945

Am,n = l;zndrznd;:z—li

arithmetic mean (¢/a)=2-2509 + 0-0024

Table 2. Lattice constants and axial ratio of AglOy4

a (A) ¢ (A) cla
Birckenbach & Buschendorf
(1932)* 5379 12-037 2:2378
Swanson et al. (1960) 5:374 12-094 2-2505
Author 2:2509 + 0-0024

* A from kX for all data prior to 1948.

& McKenney (1962). Only minor revisions were
required (Table 3) which did not affect the indices
of Table 1, with possibly one exception — the 4,1,11
reflection.

The re-indexed spacings emphasize the importance
of excluding superposed reflections from formula (3).
(For the application of formula (3) the reflections

Table 3. Re-indexed reflections of AglOy4

Rkl
e Nt
NBS  Dow dy de
118 118 1-4049 A
217 } 1403 A 1-4030
316 316 1-2994
109 1-299 1-3038
411 1.2959
503 503 1-0385
512 512 1-0384 1-0383
433 1.0385
532 532 09111
507 09112
437 0-9127
622 0-8425 0-8414
1,114  0-8425 0-8425
1,1,14 0-8407 0-8425
622 0-8414
g1,01 [ 08407 0-8405

Table 4. Selected pairs of interplanar spacings

of beryl, BesAlx(SiOs)s

hikel d Am,n cla
130 2-213 A 11-9458 0-99755
014 2-208

014 2-208 —11-2876 0-99729
131 2:152

222 2-060 8-9534 099677
114 2-056

141 1-7110 2-2140 0-99684
232 1-7007

233 1-5710 11-9523 0-99727
125 1-5690

125 1-5690 —18-7500 0-99763
330 1-5349

330 1-5349 26-8981 0-99811
006 1-5320

006 1-5320 —20-4094 0-99769
143 1-5138

241 1-4882 2-1240 0-99754
332 1-4566

332 1-4566 23-8852 0-99734
116 1-4535

152 1-3682 23-8975 0-99731
126 1-3656

126 1-3656 —27-0000 0-99671
060 1-3306 :
127 1-2041 —30-2730 0-99754
253 1-1795

336 1-0848 —20-7900 0-99881
263 1-0405

(c]a) = 0-99746 + 0-00038

2¢’ =c/a=0.99771, Koksharov (1853).

Table 5. Lattice constants and axial ratio of beryl

a c cla
1853 (Koksharov) 0-9977
1926 (Bragg & West) 9-23 A 919 A 0-9957
. El Chivor  9-226 9-189 0-9960
1935 (Sc}“ebdd){ Muzo 9415 9-231 0-9804
1947 (Norrish) 9-188 9189 1-0001
1951 (Belov & Matveeva) 9-206 9205 0-9999
1958 (Frank-Kameneskii & 9-202 9-183 0-9979
Sosedko) 9-202 9-209 1-0001
9-200 9-227 1-0029
1960 (Swanson et al.) 9-215 9-192 0-9975
1963 (Author) 0-9974
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hikl

111
040
131
220
022
151
202
311
2922
331
260
242
113
062
400
171
133
351
080
262
440
153
313
4922
371
004
191
333
442
511
282
173
044
531
294
353

2,10,0
462
244
391
551

0,10,2
480

1,11,1
373
193
620

2,10,2
264
513
115
482

0,12,0
571
404
533
135
424
084
602
622

Hexagonal system
The axial ratio ¢/a of a hexagonal phase can be

AXTIAL RATIOS FROM POWDER DIFFRACTION PATTERNS

Table 6. Indexed powder diffraction data for orthorhombic sulfur based on a=12-869, b=24-496,

de (A)
7-7067
6-1239
57573
5-6964
4-8115
4-1946
4-0595
3-9181
3-8534
3-5698
3-4473
3-3836
3-3353
3-2187
32174
3-2136
3-1124
30841
3:0620
2-8786
2-8482
2:7746
2-6900
2-6745
2:6249
2-6161
2-5806
2-5689
2-5016
2-4865
2-4446
2:4261
2-4057
2-3899
2-3773
2:3689
2-2893
2-2755
2-2534
2-2447
2-2264
22185
2-2181
2-1476
2-1408
2-1166
2-1128
2:0973
2-0839
2:0637
2-0585
2-0421
2:0413
2-0339
20298
2-0075
2-0026
2-0024
1-9890
1-9846
1-9591

NBS de Wolff

do (A)  do (A)
772 769
5-78 576
5-70 5-68
482 480
4-20 4-19
4-062 4-06
3921 391
3850 385
3-571 3-57
3-450 3-44
3387  3.38
3336 3.33
3-220 } 3-21
3115 311
3087 308
3.06
2848 2842
2-690 2-688
2.673  2.673
2624 2.621
2618  2:614
2-570 2'569
2-502 2-501
2.487
2-428 2-424
2-407 2-404
2:379 2-375
2371 2366
2-289 2-288
} 2-215
2146 = 2-146
2115 \ o
2.113 2:112
2.096 ~ 2098
2.058  2:057
2.042 } 2041
2008
2003 } 2003
1-989 1-988
1960 = 1-957

calculated from the expression

cla = %[

3(lmdndy®—17)

hkl

hE+hok,+k,— (B2 4 bk 4K,

¢=10-464 A

NBS de Wolff

de (&)
1-9421
1-9267
1-9191
1-9076
1-9034
1-9003
1-8988
1-8880
1-8754
1-8573
1-8409
1-8355
1-8329
1-8264 }

do (A)
1-926

1-908
1-904

1-857
1-842

1-8237
1-8175
1-8058
1-7849 }

1-823

1-7823
1-7789
1-7678
1-7560
1-7266
1-7237
1-7228
1-7196
1-7022
1-6985
1-6918
1-6884
1-6833
1-:6676
1-6654
1-6627
1-6594
1-6568
1-6482
1-6455
1-6443
1-6437
1-6371
1:6231
1-6228
1-6203
1-6137
1-6093
1-6087
1-6082
1-6068
16038
1-6010
1-6010
1-5951
1-5926
1:5629
1-5613
1-5562
1-5559
1-5474
1-5464

1-782

1-756
1-727

1-723

1-698

1-665

1-657

1-648

1-644

1-623

1-620

1-609

1-607

e e g N N S e e !, !

do (A)

1-926

} 1-900

1-856
} 1-838

1-823

} 1-781

1-754
1-725

} 1-698

} 1-665

} 1-658
j

1-647

} 1622

} 1-607

1-601

1-:595

} 1-563

!

hkl

753
6,10,2
555
664
0,16,0
822
4926
5,11,3
1,11,5
3,15,1
791
5,13,1
842
446

286
773
4,14,2
575
1,15,3
137
684
4,124
862
3,11,5
466
2,16,2
880
6,12,2
157
0,10,6
1,17,1
2,144
911
317
7,111
3,15,3
793
931
595
5,13,3
1,13,5
337
2,10,6
4,16,0
715
882
6,10,4
486
804
5,15,1
177
735
824
951
357
6,14,0
3,17,1
606
626

de (A)
1-5436
1-5420
1-5414
1-5367
1-5310
1:5257
1-5214
1-5166
1-5145
1-5102
1-5076
1-5046
1-4914
1-4874
1-4822
1-4751
1-4749
1-4748
1-4730
1-4693
1-4609
1-4584
1-4393
1-4390
1-4370
1-4354
1-4325
1-4241
1-4230
1-4211
1-4207
1-4188
1-4186
1-4144
1-4093
1-4049
1-3982
1-3961
1-3959
1-3945
1-3938
1-3921
1-3910
1-3873
1-3825
1-3790
1-3741
1-3734
1-3710
1-3703
1:3671
1-3669
1-3619
1-3618
1:3610
1-3565
1-3558
1-3544
1-3532
1-3450

NBS de Wolff
do(A)  do (A)

} 1-542 1-542

1-537
1-531

} 1-515

1-504
} 1-490

1-504
1-4914
1-4875

} 1-4756} 1-475

1-4617  1-461

1-4389} 1-439

1-4359

1-4230} 1-424

R — S

1-4194} 1-419

} 1-3911 ; 1-391

1-3879

1-3702

1-3620} 1-362

|
} 1-3561
)

1~3536} 1-354

where d» and d. are two independent interplanar

spacings. The procedure for obtaining the most

probable value of ¢/a is analogous to that described

for the tetragonal system. The NBS powder data for
beryl (Swanson et al., 1960) and x quartz (Swanson,
Fuyat & Ugrinic, 1954) have been selected as test
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cases. Table 4 illustrates that, despite the rather wide
fluctuations among the individual values for c/a,
the average c/a for beryl is in excellent agreement
with the precise goniometric determination by
Koksharov (1853).

The arithmetic mean of the cell constants for 9 beryl
specimens yielded a ratio of ¢/@=9-202 A/9-232 A =
0-9968. Compositional variation of beryl affects the
¢ axis by only 0-32% (9-183 <9.202 <9-231 A) and the
a axis by as much as 2-0% (9-188<9.232<9-415 A).
This morphological information can be utilized to
index the powder pattern of beryl as shown below
for orthorhombie sulfur.

The test on & quartz proved equally satisfactory.
Twenty-eight pairs of closely spaced reflections were
used to obtain an average axial ratio of 1-10007 +
0-00062 in favorable agreement with the value
1-1003 4 0-0005, the average of 10 precise morpholog-
ical measurements tabulated by Frondel (1962).

Orthorhombic system

The orthorhombic system (already described above)
has two independent axial ratios; namely, r1=a/b and
re=c/b, the latter being given explicitly by

' (R2—R2,d%d5?) (B—13d2d5?)
- E-Ba

(FE—REdEd7?) (Wddr™— 2
(h2—h2d2d?) (kidid ? — k)

p%p% %%

3

i ©

where d,d,"' and d,d;! are two independent ratios of
interplanar spacings. It is obvious from the preceding
examples that the reliability of the proposed method
depends critically on the correct indexing of a given
powder pattern. For large cells, valid indexing poses
a serious problem for at least three reasons: (1) the
relatively low absolute accuracy of most published
lattice constants, (2) the limited absolute precision
of conventional powder data, and (3) the inherent
crowding of reflections beyond the 15 innermost
reflections. If precise morphological measurements of
axial ratios are available, these data can be used
effectively for indexing in the manner demonstrated
for orthorhombic sulfur. From measurements by
Zepharovich (1869) on « sulfur, one calculates the
appropriate axial ratios

a:bic=(1-9034)-1:1:(0-8131) (1-9034)-1
=0-52538:1:0-42718 .

To convert these ratios to lattice parameters, one
needs at least one unambiguously indexed pinacoid
reflection. For orthorhombic sulfur, this turns out
to be the 004 reflection. Averaging the precise data
of Swanson et al. (1960) and of de Wolff (1958),
one obtains doos = 2616 +0-:002 A and hence ¢ =
10-464 +0-008 A; 5=1-9034c=24-496+0-016 A; and
a=c/0-8131=12-869 +0-009 A. Based on these lattice
constants, a complete list of Fddd permitted spacings
>1-300 A is calculated (Table 6) and is found to
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agree with the NBS data except for 11 ‘single’ reflec-
tions to which two or more %kl’s are assigned. From
the 22 pairs of single reflections listed in Table 7,
one computes 229 separate values for a/b and c¢/b,
a partial list of which is reproduced in Table 8. The
averaged axial ratios thus obtained are bracketed by
the values in bold type computed from cell measure-
ments (Table 9).

Table 7. Selected pairs of interplanar spacings
of orthorhombic sulfur

n hkl d n hkl d
1 202 4-062 A 23 333 2:570 A
311 3-921 442 2-502
3 311 3-921 25 442 2-502
222 3-859 511 2.487
5 222 3-859 27 173 2-428
331 3-571 044 2:407
7 331 3-571 29 224 2-379
260 3-450 353 2:371
9 260 3:450 31 353 2-371
242 3-387 2,100 2-289
11 242 3-387 33 1,11,1 2-146
113 3-336 193 2-115
13 133 3-115 35 193 2-115
351 3.087 620 2-113
15 440 2-848 37 620 2-113
313 2-690 2,10,2  2-096
17 313 2-690 39 622 1-960
422 2-673 444 1-926
19 422 2-673 41 1,11,3 1-857
371 2-624 591 1-842
21 371 2-624 43 355 1-756
004 2-618 026 1-727

Table 8. Sample answers for axial ratios of
orthorhombic sulfur

The ordinal numbers ny and n, designate the two particular
pairs of reflections selected from Table 7 for substitution in
formulas (2) and (5). The symbol A, , refers to the deter-
minant in the numerator of (2). In 203 instances, the absolute
value of this determinant was greater than 10 and yielded
sufficiently accurate axial ratios; the other 26 cases (e.g.
values in parentheses) were not included in the averages

Ny np Am,p alb c/b
1 7 —20-5447 0-52495 0-42675
1 9 164651 0-52583 0-42742
1 11 11-4540 0-52405 0-42606
3 19 36-6240 0-52483 0-42743
3 21 —50-6373 0-52494 0-42754
3 23 8-9782 (0-52404) (0-42668)
7 37 —52-7924 0-52543 0-42543
7 39 — 80-8500 0-52518 0-42612
7 41 65-8143 0-52530 0-42579
33 35 —270-1801 0-52585 0-427170
33 37 248-1229 0-52583 0-427170
33 39 158-7690 0-52628 0-427171
33 41 —182-4606 0-52618 0-427171
33 43 69-3951 0-52471 0-427168
21 35 — 4404261 0-52623 0-42796
13 15 —0-9702 (0-50934) (0-41855)

(@]B) = 0-5256 + 0-0012; (2]b)=0-4273 + 0-0008
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Table 9. Lattice constants and axial ratios of orthorhombic sulfur

a
1869 (Zepharovich) —
1924 (Mark & Wigner) 12:89 A
1925 (Bragg & Bragg) 12-89
1935 (Warren & Burwell) 12-95
1937 (Trillat & Oketani) 12-83
1951 (Ventriglia) 12.92
1955 (Abrahams) 12-845
1958 (de Wolff) 12-84
1960 (Swanson et al.) 12-870

1963 (Author) —

If one lacks either precise goniometric data or precise
cell constants, one is forced to resort to an iterative
procedure for extending the number of unequivocally
indexed reflections after each cycle of computation.
The details of this method are described under the
monoclinic system.

Monoclinic system

From the quadratic factors for two separate inter-
planar spacings of a monoclinic crystal, one derives
the condition that
(P2 —hZd%d)a2b? sin2 B4 (12— I, d%,d;%)c2b? sin~2

—2(hyly—hyl,d%d %) a"1c1b2 sin—2 B cos B
+(kn—kndnd;*) =0,

where the symmetry axis is b, c<a, and f>90°.
Substituting

a . c . —2b2 cos —2cos
x=5s1n/3, y=5smﬂ,z= a0sin2/3’3= p B ,
one can solve for z, y, and z from three non-redundant
pairs of spacings (requiring at least four single reflec-
tions and at most six single reflections). The deter-
minant form for x is given by (6); a comparable
expression is valid for y.

ho— b dy?) (=155 do®) (holy— byl didy?) b
)

(R2—R2d2dy2) (B—Bd2dy?) (hyly—h,l,d3ds?)

(RS —R7dZd:®) (=07 d7d;?) (hly—h,Ld7ds?)
KA — %) (B—Bd2,d52) (holy— Rl did ?) 1B
( n n m m%m )
(kydzd 2 —kZ) (lqz—lf,d%dq_z) (helg—hpl,did; %)

(kgd?d;z—k?) (l?_l?_d?ds—Z) (hsls"_hrlrd?d:z)

(6)

xr=

The solution for z is stated by

Z=]./Am,p,r
(hn— Pk dndy®) (G —lndndy®) (kndyds?—k7)
x | (R2—hRdA?) (12— Bd2d7?) (B2 —12) |,

(hs—hpdrd;®) (5~ d7d) (K7d7d®—KS)

where d,d;', d,d;?, dd;? are three non-equivalent
ratios of interplanar spacings and Ap,p,r is the
determinant in the numerator of (6). Since x is a
positive quantity, it follows that the determinants in
(6) must be of the same sign for correctly indexed

reflections. The same argument applies to the vari-

(7)

b c alb c/b

— — 0-5254 0-4272
24-61 A 10-63 A 0-5238 0.4319
24-51 10-48 0-5259 0-4276
24-60 10-50 0-5264 0-4268
24-60 10-42 0.5215 0.4236
24-55 10-48 0-5263 0-4269
24-369 10-437 0.5271 0-4283
24-46 10-45 0-5249 0-4272
24-49 10-468 0-5255 0-4274

— — 0-5256 0-4273

Table 10. Comparison of calculated interplanar spacings
of Ag2COs with NBS-indexed data based on

a=4-836, b=9555, ¢=3235 A; Bf=92-64°

(hkl)xBS d, de (de—do) 103
(]
100 4-85 A 4-8309 A —3-95%
020 4-78 47715 —0-52
110 4-32 4-3112 — 204
120 3-41 3-3969 —3-86*
001 3-25 3-2316 — 5-69*%
o011 3-08 3-0612 —6-14*
101 2-74 2-7451 1-86
130 2-66 2-6591 ~0-34
111 256 2-5362 —9-38*
200 2-42 2-4154 —1-90
040 2-39 2-3888 —0-50
121 238 2:3801 0-04
210 2:35 2-3418 —3-50
121 2-32 2-3044 —6:77*
031 2.27 2-2684 —0-71
220 2:16 2:1556 —2-04
131 2-04 2-0282 —5-82%
201 1-976 1-9789 1-47
211 1-934 1-9378 1-96
230 1-929 1-9246 —2:29
041 1-912 1-9209 4-63%
201 1-8933 9-67*
211 } 1-875 { 18572 —9-58%
141 1-801 1-8020 0-55
150 1-777 17770 0-00
240 1-700 1-6985 —0-88
231 1-678 1-6809 1-73
051 1-639 1-6449 3-59%
231 1-626 1-6275 0-92
002 1-616 1-6158 —0-12
012 } 1-591 { 1-5932 1-38
060 1-5925 0-94
310 1-587 1-5879 0-57
112 1-538 1-5339 —2:67*
022 1-530 1-5306 0-39
241 1-526 1-5239 —1-38
160 1-511 15124 0-93
102 1:507 1:5115 2.98%
301 1-468 1-4685 0-34
311 1-450 1-4515 1-03
122 1-4411 0-07
032 } 1-441 { 1-4410 0-00
061 1-428 1-4285 0-35
321 1-411 1-4087 —5-20%
311 1-400 1-4002 0-14
132 1-398 1-3966 —1-00
251 1-3747 1-3747 0-00
202 1-3723 1-3725 0-15
132 1-3654 1-3656 0-15
260 1-3299 1-3295 —0-30
222 1-3192 1-3192 0-00
142 1-3023 1-3026 0-23
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able y. For each solution of (z,y, and z), one can
compute cosf, a/b, and c¢/b by substituting in the
following formulas:

—xyz @ _ x c y
2 b (1—cos2f)¥ b (l1—cos2f)t’

cosf§ =

From v pairs of correctly indexed reflections
v(v—1)(v—2)/6 sets of answers are possible.

Great caution must be exercised in properly indexing
powder patterns of monoclinic substances. Starting
with the reported lattice constants one applies an
internal consistency test involving the relative dif-
ferences between calculated and observed spacings.
Column 4 of Table 10 illustrates this test applied to
the published powder data of Ag.COz (Swanson,
Morris, Stinchfield & Evans, 1962). The 14 starred
reflections show an unexpectedly large deviation from
the calculated values. Since the single-crystal data
by Eldridge (1942) yield the same indices for the
first 11 reflections, one is led to the conclusion that
the stated lattice constants are probably in error
because the NBS d data are accurate to at least 0:39%,.
The first attempt to recalculate the lattice constants
is based on the innermost identified pinacoid reflec-
tions; namely, 020 and 040 yielding b=9-56 A
100 and 200 yielding asinf=4-845+0-015 A; 001
yielding ¢sin $=3-25 A. From the relation

dig=0"2sin2f+c2sin-2f+2a-1c1sin"2f cos §,

one calculates §=91-83° and consequently a=4-847 +
0-016, ¢=3-253+0-011 A. Likewise, from dinn and
di21 one computes §=91-97° and 92-13° respectively;
and from dogi, b=9-541 A. Using the averaged lattice
constants a=4-848, b=9-55+0-01, ¢=3252 A, and
f=91-98+0-15° to index the Ag:COsz pattern, one
notices immediately that after the first 20 reflections
in Table 10, most of the assigned indices are incorrect.
From 10 pairs of correctly indexed reflections, the
computer program furnished new values for a/b, c/b
and sin 8 from which a new set of lattice constants
was calculated. A third iteration (coupled with new,

Table 11. Selected pairs of interplanar spacings of
AngOa

The values for the spacings are the averages of
the corresponding d,’s in Table 13

n hkl d n hkl d
1 200 2:425 A 15 211 1-875 A
040 2:384, T41 1-801
3 210 2-349 17 240 1-700;
121 2-322 231 1-678;
5 121 2-322 19 231 1-639
031 2:274 002 1-626
7 131 2:041 21 002 1-626
201 1-976 300 1-616
9 201 1-976 23 160 1-512
211 1-935 112 1-508
11 21 1.935 25 301 1.468
230 1-929, 330 1-441
13 201 1-912
211 1-875

913

precise powder-data for the first 17 reflections of
AgsCOs) produced the final set of indices from which
13 pairs of properly indexed reflections (Table 11)
were selected for the computer program which printed
281 answers and 5 indeterminate (0/0) cases. Table 12
reproduces the first 48 of these answers. Finally,
the correctly indexed powder pattern for AgsCOjs is
given in Table 13. Single-crystal intensity data can
furnish supplemental information to substantiate the

Table 12. The first 48 computations of sin f, a/b,
and c/b for Ag2COs

The ordinal numbers ns, np, and n, designate the three pairs

of reflections from Table 11 for substitution in formulas

(6) and (7). The symbol Ap;p.r refers to the determinant in

the numerator of (6). The averages include only those cases
(88) for which |4z 5,y = 10

Nm Np Ny Am;psr sin alb c/b

1 3 5 —3-7486 0-99936 0-50882 0-34173
1 3 7 —10-9908 0-99946 0-50877 0-34104
1 3 9 0-4815 0-99949 0-50875 0-34080
1 3 11 11-7257 0-99947 0-50876 0-34094
1 3 13 —0-1498 0-99845 0-50928 0-34649
1 3 15 —11-1209 0-99937 0-50881 0-34164
1 3 17 —11-4243 0-99944 0-50878 0-34115
1 3 19 —19-2958 0-99943 0-50878 0-34124
1 3 21 15-6343 0-99942 0-50879 0-34129
1 3 23 — 77758 0-99949 0-50875 0-34081
1 3 25 15-6343 0-99941 0-50879 0-34136
1 5 7 0-2197 0-99963 0-50868 0-31220
1 5 9 —0-1777 0-99938 0-50881 0-33930
1 5 11 —4-3273 0-99938 0-50881 0-33965
1 5 13 —0-1407 0-99940 0-50880 0-33705
1 5 15 0-1688 0-99941 0-50879 0-33641
1 5 17 4-2161 0-99937 0-50881 0-34021
1 5 19 12-0745 0-99936 0-50882 0-34096
1 5 21 —16-0000 0-99936 0-50882 0-34131
1 5 23 15-5899 0-99936 0-50882 0-34128
1 5 25 —4-4910 0-99937 0-50881 0-34050
1 7 9 —0-4928 0-99946 0-50877 0-34040
1 7 11 —12-0000 0-99946 0-50877 0-34076
1 7 13 —0-4215 0-99949 0-50875 0-33592
1 7 15 —0-1569 0-99986 0-50856 0-26121
1 7 17 11-6915 0-99945 0-50877 0-34135
1 7 19 34-2704 0-99945 0-50877 0-34135
1 7 21 —45-9942 0-99946 0-50877 0-34128
1 7 23 45-2524 0-99946 0-50877 0-34093
1 7 25 —12-2507 0-99945 0-50877 0-34222
1 9 11 0 0/0 0/0 0/0

1 9 13 0-0251 0-99930 0-50885 0-33829
1 9 15 0-5055 0-99939 0-50880 0-33938
1 9 17 —0-0000

1 9 19 —0-6363 0-99956 0-50872 0-34183
1 9 21 1-3142 0:99952 0-50874 0-34126
1 9 23 —1-6340 0-99949 0-50875 0-34081
1 9 25 —0-1642 0-99917 0-50892 0-33674
1 11 13 0-6132 0-99928 0-50886 0-33848
1 11 15 12-3095 0-99938 0-50881 0-33973
1 11 17 0 0/0 0/0 0/0

1 11 19 —15-4944 0-99952 0-50874 0-34165
1 11 21 32-0000 0-99949 0-50875 0-34127
1 11 23 —39-7886 0-99947 0-50876 0-34089
1 11 25 -~ 4-0000 0-99923 0-50889 0-33781
1 13 15 0-4243 0-99940 0-50880 0-33703
1 13 17 0-5974 0-99926 0-50887 0-33879
1 13 19 1-2071 0-99914 0-50893 0-34012

sin f=0-99942 + 0-00002; (a/b)=0-50834 + 0-00039;
(¢]b)=0-3410, + 0-00024
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Table 13. Indexed powder pattern of Ag,CO; with lattice constants a=4-850;+ 0-005,
b=9-541+ 0-002, c=3-253,+ 0-004 A, f=91-95°10-04°

The counter data of Ag,CO; were recorded on a Norelco diffractometer with filtered Cu K« radiation, 35 kV, 20 mA; 1°slits;

$°/min (20); time constant 2. Silicon powder was used as internal standard. The film data were obtained in an AEG Guinier

double cylinder camera (114:7 mm diameter) with monochromatic Cu Kx, radiation. Aluminum foil served asinternal standard.

Tpxr oc [(1+cos? 20)/sin? 8 cos 0] jnriF %nr1, where the experimental Fpg's are obtained from the single-crystal data of Eldridge

(1942). The silver carbonate was prepared in a high-pressure glass ampoule by reacting pure dry AgO and liquid CO, at room

temperature (23-30 °C) for 24 years. (2Ag0+CO, - Ag,CO;+440,). An infrared spectrum by the mull technique revealed
none of the trace impurities encountered in commercial Ag,COyq

hkl de d, Ingt/Izo,
Counter Film

100 4-8476 A 4-845 A 4840 A

020 4-7705 4-778 4770

110 4-3218 4-323 4-322

120 3-4002 3-401

001 3-2516 3-252

011 3-0778 3-077

101 2-7439 2-745 2.745 1:000

021 2-6868 0-015

130 2-6591 0-855

101 2-6589 } 2:660 } 2:657 0-714

T11 2-6370 absent

111 2-5613 2:562

200 2-4238 2-424 2:426

040 2-3853 2-385 2-384

121 2-3785 2-379

210 2-3492 2-349

121. 2-3225 2-322

031 2-2736 2.274

220 2-1609 2-161

140 2.1402 0-027

131 2-0775 NBS 0-028

131 2-0399 2-041 (counter)

201 1-9758 1-976

211 1-9347 1-936 1-934

230 19277 1-930 1-929

041 1-9233 absent

201 1-9124 1-912 1-912

211 1-8751 1-875 1-875

221 1-8254 0-027

141 1-8002 1-801 1-801

150 17756 0-125

141 1-7755 1-776 1-777 0-110

221 17751 0-139

240 1-7001 1-701 1-700

231 1-6783 1-679 1-678

051 1-6457 0-138

231 1-6389 1-639 1-639 0-212

002 1-6258 1-626 1-626

300 1-6159 1-616

012 1-6027

310 1-5982 1-591

060 1-5902 } 1:592 1-587

Rkl de do Tnkt/ T304
Counter NBS

151 1-5666 absent

102 1.5575

151 1-5503 absent

022 15389

022 1838 1-539 } 1-538

320  1-5305 1-531

102 15259 1-526

241 1-5216 absent

160  1-5110 1513 1-511

112 1-5067 1-509 1-507

250  1-4993 0-030

241 1-4920

I22  1-4806

301 14671 1-468 1-468

122 14533

511 14500 1-450

032 14476

330 14406 1-441

061 14285 0015

301 14278 1-428 } 1-428 0-050

311 14l2l 1-412 1-411

321 14023 1-400

132 13988 } 1-4005 1-398

161  1-3758 1-3747 0125

132 13757

351 13726 0-085

202 13720 } 1-3723

321 13679 0-051

161 1.3647 } 1:3654 0-116

212 13580

251 13508 0-034

042 1-3434

340  1.3378 0013

331 13322 0083

260 13296 } 1:3308 } 1:3299 0-109

202 1-3204

222 13185 1-3192

212 1-3167

170 1-3121 absent

42 1.3041

331 13026 } 1:3028 } 1-3023 0148

Table 14. Lattice constants and axial ratios of the ¢ isomer of 1, 2, 3, 4, 5, 6-hexachlorocyclohexane

a b ¢ B alb ¢/b
1947 (Kauer, DuVall & Alquist) 694 A 11-66 A 677 A 111° 0-5952 0-5806
1950 (Norman) 702 A 11.79 A 6:80 A 112° 0-5954 0-5768
1963 (Author) 1177 A 112° 6/ 0-5953 0-5765
+ + + +
0-005 10’ 0-0006 0-0006

correct assignment of indices: firstly, by excluding
those permitted reflections not observed from single
crystals; and secondly, by evaluating the relative
intensity of each reflection contributing to the total
intensity of an unresolved powder line. Column 5
of Table 13 reveals clearly that reflections 041 and 241

should have negligible intensities and that powder
lines 2-66, 1777, and 1-428 A are not single reflections
(see Table 10). The data by Eldridge would exclude
also the 1-639 A line as a single reflection.

A somewhat more difficult case was encountered
in the determination of the axial ratios of the ¢ isomer
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of 1,2,3,4,5,6- hexachlorocyclohexane because spacings
no larger than 22 A were used in the computation.
Three cycles of indexing were required to verify the
unequivocal assignments of 9 pairs of single reflections.
The resultant data indicate the accuracy attainable
by the described method (Table 14).

Triclinic system

In the triclinic system the cell edges are the shortest
three non-coplanar translations labeled according to
the convention 0<c<a<b, and oriented so that
angles « and f are both greater than 90°. From the
ratio of the quadratic factors of two separate inter-
planar spacings d, and dn, one obtains the condition
that

(R%— B i d %) (@¥20%2) + (I — 17, d7, d %) (c*2[b*2)
+2(knln—kpl,dZ d; %) (c*/b*) cos a*
+2(hnln— bl dZ,d;2) (a*c* [b%2) cos B*
+2(hnkn— by, ko d2 A7 %) (@*[/0%) cos y*
+(k—kndnd;?) = 0,

where a*, b*, c*; o*, B*, and p* are the reciprocal cell

constants. Substituting

1= (@*2)b*2), a0 = (c*2[b*2), x3=(2c*/b*) cos a*,
za=(2a*c*/b*2) cos B*, xs=(2a*/b*) cos y*,

one can solve for these z’s from five non-redundant
pairs of spacings (requiring at least six single reflec-
tions and at most ten single reflections). From these
solutions one can compute

Zs5

* - *
cos o* = —, cos f* = % cos y* = —
xz' Xy 21:1

cos f* cos y* —cos o*

cos ¢ = - -
sin f* sin p*
cos y* cos o* —cos f*
cosff = T
sin p* sin o
cos * cos f* — cos y*
cosy =

sin * sin g*
Hence, the axial ratios follow

a sina c sin y
- = —%.— and g = T—— .
b} sin 8 23 sin g
From » pairs of correctly indexed reflections, an upper
limit of () sets of answers are obtainable. No
program has been written for this general case because
of limited demand.

Comparison with least-squares methods

The mathematics pertaining to the least-squares
method (developed by Gauss in 1821) has been
applied in recent years to the refinement of lattice
constants and in turn to the refinement of axial ratios.
To define the problem let v;, given by

915

=d}2— (d%,)F =hFa*® + k5o** + IFc*® + 2ks;b* c* cos o*

+2ljhjc*a* cos B* + 2hsksa* b* cos y* — (d%,)7 ,
be the residuals, or deviations of the computed
quadratic factors, d¥?, from the corresponding
observed values, (do,,s),, where j ranges from 1 to =.
The task is to find those values of a*, b*, ¢*, cosa*,
cos B*, cos y* which yield the best overall agreement
between the computed and observed values of all
the observed interplanar spacings. In the least-squares

approach this implies that 2 v; be a minimum.
j=1
The necessary but not sufficient conditions for a

minimum to obtain are

20 (,21” ) =0 g (721” J=00
0
0 (cosy*) (7211) > =0.

Since approximate values for the reciprocal cell
constants are assumed to be known, one makes the
transformation a*=(a*)o+ Aa*, etc., and reduces d}*
to a linear form by a Taylor expansion neglecting
terms higher than the first order in the increments.
Imposing the above conditions on the resultant

expression. of Z v}, one arrives at the normal equations

=1
which can be solved for the six unknown increments
by various schemes (Mueller, Heaton & Miller, 1960;
Plackett, 1960; Caron & Donohue, 1961; Kempter &
Vogel, 1962; Mozzi & Newell, 1962 ; Evans, Appleman
& Handwerker, 1963). Two important assumptions
are involved in the least-squares method: (1) the
correct assignment of hsk;l; is assumed for each observed
reflection and (2) the residuals, v;, are assumed to
follow the Gaussian law of error (Fig.1). The first
assumption is difficult to meet because unique
indexing of a powder pattern of moderate complexity
is seldom achieved in practice. Most least-squares
programs proceed from an initially indexed pattern
to obtain refined lattice constants. For uniaxial
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Fig. 1. Histogram: frequency distribution of »; pertaining to
the d data of x-S; shown in Table 6, columns 2 and 3.
Comparison with the normal curve of error reveals a definite
skewness of the w; distribution. This asymmetry has a
negligible effect on the least-squares method provided the
v5’s become sufficiently small.
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Table 15. Comparison of cell refinements
The lattice constants in italic are the reference data to convert from axial ratios to cell dimensions
Substance a (A) b (A) ¢ (A) B Cell Method Reference
Ag,CO, 4-84 9-54 3-24 92-7 initial Eldridge (1942)
4-836 9-555 3:235 92-64 refined Least squares Swanson et al. (1960)
4-851 9.541 3-253 91-95 refined Axial ratios
*-Sg 12-84 24-46 10-45 initial de Wolff (1958)
12-870 24+49 10-468 refined Least squares Swanson et al. (1960)
*-Sg 12-870 2449 10-468 initial
12-870 24-493 10-467 refined Least squares Caron & Donohue
+0-001 +0-003 +0-001 (1961)
o-Sg ¢/ 0-8131 1-9034c 10.464 initial
12-870 24-485 10-469 refined Axial ratios
+0-001 +0-006 +0-003
& isomer of 6-94 11-66 677 111 initial Kauer et al. (1947)
1,2,3,4,5,6-CgHgClg 7-012 11-769 6-786 112-07 refined Least squares Evans* (1963)
+0-001 +0-002 +0-001 +0-02
7-007 11.770 6-785 112-1 refined Axial ratios
+0-009 +0-005 +0-009 +0-17

* Private communication.

substances, biaxial crystals with small lattice con-
stants, or crystals with accurately known large cells,
the least-squares method does yield satisfactory
refinements. To reduce the probability of incorrect
indexing Evans et al. (1963) have programmed an
iterative procedure for automatic computer indexing.
A match between d. and d, is accepted ‘if and only
if there is no other observed reflection and no other
calculated reflection with a Bragg angle less than
a specified tolerance 7' different from that of the given
reflection.” Through the courtesy of Dr Howard
T. Evans, Jr. (U.S. Geological Survey) the unindexed
powder data of the ¢ isomer of 1,2,3,4,5,6-hexa-
chlorocyclohexane were processed by this program
yielding cell constants in excellent agreement with
those from the axial ratios procedure (Table 15).
It must be pointed out, however, that the least-
squares refinement even with automatic iterative
indexing does not guarantee unique or correct index-
ing. For example in the case of the ¢ isomer of C¢HgCls,
after nine cycles of refinement, 22 reflections out of
28 observed reflections were indexed as single of
which three were designated ambiguous by the axial
ratios method. Moreover, the single reflections 100,
202, 220, and 241 were not accepted by the program
either because of poor agreement or of ambiguous
indexing (Table 16),

The axial ratios method required three cycles for
refinement involving 14 distinet reflections. By
testing each unambiguous reflection crystallograph-
ically against all other uniquely indexed reflections,
one notes that the calculated axial ratios are sensitive
to incorrect indexing, to extraneous lines, or to faulty
d measurements — as evidenced by excessive devia-
tions from the arithmetic mean of a particular axial
ratio or by the appearance of imaginary values for
a/b or c/b. Regrettably, the axial ratios method
requires the discriminating judgment of an ex-

Table 16. Comparison of indexed reflections of ¢ isomer
of 1,2,3,4,5,6-hexachlorocyclohexane

hkl

do dc USGS Dow (Ihklljon)c
6-50 A 6-498 A R 100 0-078
3-327 3-3285 031 031 0-274
3-3248 211 0-482
3-223 3-2236 121 121 0-387
3-2350 131 0-002
2-856 2-8591 R 202 0-161
2-849 2-8443 R 220 0-097
2-776 2-7783 212 212 0-118
2-7732 022 0-004
2:336 2:3359 301* 0-000
2-3385 141 0-155
2-241 22431 R 241 0-104

R =rejected by program.
* Space group limitations on possible reflections inten-
tionally omitted.

perienced X-ray crystallographer. Ambiguous reflec-
tions are not ignored. Relative intensities of these
reflections are calculated either from intensity data
on single erystals or from known atom-coordinates

(the program by Smith (1963) is very useful in this
connection). Appropriate weighting factors are then
applied to estimate the effective d values for the
superposed reflections.

For computing cell constants from accurate axial
ratios two approaches are pursued. The first has been
described in the case of orthorhombic sulfur and
requires the d value of at least one unambiguous
pinacoid reflection. To avoid tying all lattice con-
stants to one pinacoid, the second and preferred
approach utilizes reflections dominant in one particular
index. For example the value of b=24:485+0-006 A
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for x-Sg in Table 15 was calculated from the set of
reflections 2,10,0, 1,11,1, 1,11,3, 5,13,1 by substitution
in the convenient expression

b=dpu)/ (K 4R +17r37) .

Likewise the value of a=12-870+0-001 A was com-
puted from the selected unambiguous reflections
440, 620, 842, and 804. The results from the two
approaches compare as follows in the case of x-Ss:

a b c
Method 1 12-871 A 24-489 A 10.464 A
Method 2 12-870 24-485 10-469
+0-001 +0-006 +0-003

From the limited comparison in Table 15 it appears
that the axial ratios procedure for cell refinement is
a valid referee method for the least-squares refine-
ments. The reader should be cautioned, however,
that the described method is no panacea for run-of-
the-mill powder patterns; on the contrary, it tends
to expose their inherent limitations. In the process
of tabulating diffraction data on isomorphous sub-
stances the author has examined in detail several
hundred indexed powder patterns (both from the
literature and from the Dow files) and has come to
the conclusion that many of these patterns, while
satisfactory for ‘fingerprint’ systems of chemical
identification, are not of sufficient resolution and
absolute accuracy for the precise determinations of
lattice constants and usually are not reliable in the
assignment and value of relative integrated intensities.
The general utility of the powder method would be
markedly enhanced by greater absolute accuracy in
th(jX measurement of interplanar spacings greater than
4

The author is grateful to Miss Carole Engbrecht
of the Dow Computations Laboratory for writing
implemented ALGOL programs for the Burroughs
220 computer which permit routine calculations of
axial ratios for all but the triclinic system.
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